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ELASTIC WAVE SCATTERING BY A CIRCULAR CRACK

By S. KRENK anp H.SCHMIDT
Riso National Laboratory, DK-4000 Roskilde, Denmark

(Communicated by F. Ursell, F.R.S. — Received 26 October 1981)

The scattering of waves by a circular crack in an elastic medium is solved by a direct
integral equation method. The solution method is based on expansion of stresses and
displacements on the crack surface in terms of trigonometric functions and orthogonal
polynomials. The expansion coefficients are related through an infinite matrix, and by
contour integration the matrix elements are expressed in terms of finite integrals. The
scattered far field is expressed explicitly in terms of simple functions and the displace-
ment expansion coefficients. The system of equations is solved numerically, and
extensive results are given both in the form of maps of the scattered far field and as
scattering cross sections. Neither the method nor the specific results are restricted
by any assumptions of symmetry.
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1. INTRODUCTION

The problem of scattering of elastic waves by a circular crack is of considerable importance,
for example in geophysics, fracture mechanics and ultrasonic testing, and it is therefore natural
that it has received some attention. However, useful explicit results are scarce. The reason for
this seems to be the mathematical complications of the problem due, at least in part, to the
simultaneous generation of longitudinal and transverse waves.

Three steps appear to be necessary in the solution of the general scattering problem. First the
problem must be formulated as a boundary value problem in terms of suitable unknown func-
tions. This is quite simple for problems with axial symmetry reducing readily to scalar form,
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but for oblique angles of incidence vector boundary conditions must also be treated. In most of
the literature this problem has been avoided by severe symmetry restrictions. Thus Robertson
(1967), Mal (19684,5; 1970) and Sih & Loeber (1968, 1969) all considered axisymmetric
problems. The problem of a plane transverse wave with normal incidence was considered by Mal
(1968¢), but this problem also involves considerable syrﬂmetry. Recently a general formulation
of the boundary value problem in terms of integral equations has been given by Martin (1981),

p
[\ \

—~ but no attempt at a solution is included.

; > As an explicit, analytic solution of the problem seems unobtainable, the second step must be
O the derivation of a suitable numerical method. It is crucial that this method retain principal
=4 5 features such as the singular behaviour of the stresses at the crack front. In the literature this has
4O led to transformation of the original dual integral equations to Fredholm integral equations of
E 8 the second kind. This is accomplished by a transformation of the unknown functions, and in the

traditional approach this step introduces Abel integrals that are inconvenient for computations.
In the present approach this step is changed, and the displacement discontinuities across the
crack are introduced as the unknown functions. This has two immediate consequences. First it
facilitates an a priori estimate of the required accuracy, and the results have a direct physical
interpretation. Secondly, through suitable expansionsit leads to a much simpler discretized form
of the problem.
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168 S. KRENK AND H.SCHMIDT

Finally, the effectiveness of the method depends on the readiness with which it allows evalu-
ation of specific characteristics of the scattered field, notably the far field and the stress intensity
factors. This aspect favours the present method, as the far field can be expressed in closed form
in terms of simple functions and the expansion coeflicients, and the stress intensity factors are
simply linear combinations of the expansion coefficients.

2. POTENTIAL AND TRANSFORM REPRESENTATIONS

The representation of the cylindrical displacement components {, v, w} in terms of scalar
potentials and the subsequent expansion of these as Fourier series with Hankel transform coef-
ficients closely follow the presentation of Schmidt & Krenk (1982) and only an outline is given
here.

Let {r, 0, z} be a cylindrical coordinate system. The corresponding displacements {u, v, z} can
then be expressed in terms of three scalar potential functions @, A and ¥ as

= %)4';%%4'2:_6/2 (2.1)
w= %%—{;%(rgr)+;2§—;}/l (2.3)

The potentials satisfy the scalar wave equations
(Vz“c_lgz%zz) @ =0, (VZ—%S—;) (4, %) =0, (2.4)

where ¢;, and ¢; are the velocities of longitudinal and transverse waves, respectively.

In the following only vibrations with angular frequency ® will be considered, and displace-
ments, stresses and potentials can then be expressed in complex form with the common factor
elt, This factor will not be included explicitly in the formulae. Appropriate Fourier expansions

of the potentials are © cos mb
20,0, = T 07,0 o) (2.5)
® cosmb
A("ﬁ 09 g) = m§=-:0A (777 g){smmﬁ:’ (26)
2 wm sin m0
w,00) = £ w0 0 L (27)

where the characteristic length a has been used to define the dimensionless coordinates 5 = r/a
and { = z/a.

Substitution of the expansions (2.5)—(2.7) into the wave equations (2.4) and use of the Hankel
transform lead to the following representation of the coefficients in the half-space { > 0:

n(9,0) = @t [ " An(s) st 1 (1) s, (2.8
A, 0) = @ [ Br(s)seth 5 s, (2.9)
wm(n,g) = a2 f " On(s) 5ot () s, (2.10)
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where J,,( ) is the Bessel function of the first kind of order m, and

(s2—h2)E, s >h,

( ={i(h2-sz)é, s<h (2.11)
(2—kDE, s >k

Bls) = {i(kz—sz)é, s<k (2.12)

with 4 and £ dimensionless wavenumbers of longitudinal and transverse waves, respectively,
which are defined in terms of Poisson’s ratio v, the shear modulus # and the mass density p, by

o _ (@a)\? _ 1(1-2v)w%?p,

= () =3y (2.13)
2 2,2

kz:(%f) _ @, 2"0, (2.14)

The three independent solutions (2.8)—(2.10) are equivalent to those obtained by direct inte-
gration by Sezawa (1929).

The displacement components w(#, 6, &), u(y, 6,¢) and v(7, 6,§) are expanded in terms of
w™(n, £), u™(n, §) and v™(, {) like (2.5)—(2.7), respectively. In the half-space { > 0the coefficients
are

wm(;h &) - fw{—Am(s) sa(s) e840 4 Bm(s) s2e=b@} J (5s5) ds, (2.15)

S, 0) £0m(, ) = [T A7) 520 2 B1(5) 5B(5) 700+ Cn(s) 5760} 1)
(2.16)

The combinations of polar vector components in (2.16) correspond to Cartesian components
of Fourier order m and are therefore the natural vector equivalent to the scalar equation (2.15)
(Krenk 1979).

The boundary conditionsinvolve the stress components o, ,, and o,,. When these components
are expanded like (2.5)—(2.7), the resulting integral representations for { > 0 are

1 m
ﬁo'zz(% {) ]

= fo {A™(s) (252 — k?) s e~ — Bm(s) 2526 (s) =44 (s)} T, (95) ds, (2.17)
L{oR0L) k(0. 2)

N f :{ + A™(s5) 2s%a(s) 74O F Br(s) (257 — k%) s €= — O (s) $2f3(s) eSO} T, 44 (15) ds.

(2.18)
3. INTEGRAL EQUATIONS
The symmetric problem
The symmetric problem is characterized by the two homogeneous conditions
L . 0,5(7, 0,0) = 0,(7,0,0) = 0. (3.1)
Substitution of (2.18) yields
Am(s) = {(s®— 3k2%) [sa(s)} B™(s), m=0,1,..., (3.2)
and Cm(s) =0, m=0,1,.... (3.3)

12-2
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170 S. KRENK AND H.SCHMIDT

Inversion of (2.15) now enables evaluation of the transform function B™(s) in terms of the
displacement coefficient w™ (7, 0). When a is taken as the radius of the crack, w™(#, 0) = 0 for
7 > 1, and the interval of integration is finite:

Bn(s) = = [ w00, 0) 1T 05 d. (3.4)

When this result is substituted into (2.17), there results a relation between the prescribed normal
stress and the as yet unknown normal displacement on the crack surface 0 < 9 < 1, { =0+

I%Lo'zz 7,0 asz { __ _520‘( )/)7(8)} ( ) (”S)f <£a O) ng(gs) dgds (3'5)

For 0 < # < 1 (3.5) provides an integral equation for the determination of w™(§, 0). It follows
from the limit lim 4{(1=9) A7) (= )2 = () B9} ss) = - (3.6)
that change of the order of integration would lead to a strongly singular kernel in (3.5). The
reason is that (3.5) is stated in terms of its limiting form for { = 0+, factors that decay expo-
nentially in s thereby being omitted. When the asymptotic behaviour of the integrand is used
to determine the behaviour of w™(, 0) near the end point § = 1, the integral equation (3.5) can

be solved directly without change of the order of integration, as discussed by Krenk (1981, 1982).
This method of solution is described in § 4.

The antisymmetric problem

The antisymmetric problem is slightly more complicated, because the non-homogeneous
boundary conditionsin this case involve vectors. Antisymmetry gives the homogeneous condition

0.(1,0,0) =0 (3.7)
and from (2.17) it follows that
Br(s) = {(s*— 3%) /s (s)} A™ (). (3.8)

After elimination of B™(s), inversion of (2.16) gives A™(s) and C™(s) in terms of the displacement
coeflicients u™(#, 0) + v™(%, 0):

an(s) = | = [ 01,0) 40, 0 1 ia19) [ un,0) =00, 00} 0T s () |, (3.9)

0n(s) = g | [ w0, 0) 47, 01T a() d + [ um(, 0) =97, 0} a1 ] (3.10)

2as

Substitution of these relations into (2.18) yields an expression for the shear stresses on the plane
¢ = 0in terms of the in-plane displacements of the crack surface 0 < 9 < 1, {=0+:

o n,0) + 01,00} = — 5 [ [ 606~ g (- )—s%c(s)ﬂ(s)}]
x fo (um (£, 0) +vm(£, 0)} £ Ty (£5) dE
4
qre sy (68~ 4 =% s}

X J: {um(é‘, O) + vm(g, 0)} ng?l(éy) dg]] 5Jm:t1<775) d.f. (311)
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ELASTIC WAVE SCATTERING BY A CIRCULAR CRACK 171

Use of the limit (3.6) shows that change of the order of integration in (3.11) would lead to the
same type of strong singularity of the kernels in (3.11) as in (3.5). However, the direct method
used to solve (3.5) also works for the coupled equations (3.11). Both problems are therefore
treated together in the next section.

The limit (3.6) has been used to identify the asymptotic behaviour of the integrands for fixed &
and large values of 5. Alternatively it can be used to derive the integral equations of the corre-
sponding static problem by considering the limit £ — 0. It is easily verified that this limit gives
the integral equations of the static problem given by Krenk (1979).

4. SERIES REPRESENTATION

The numerical solution is based on the observation that in the limit s/k - oo the integral
equations (3.5) and (3.11) retain their dominant behaviour while permitting an explicit solution
in terms of polynomial expansions. In the general case, £ # 0, the same expansions are used, and
their orthogonality properties enable a reformulation of the integral equations as infinite systems
of algebraic equations. The solution of the integral equations involve two main steps, namely the
evaluation of the matrices of the truncated systems of equations and the solution of the equations.
Only the derivation of the matrices is given here. A discussion of the general method including
the choice of expansions has been given by Krenk (1981, 1982).

The symmetric problem

The integral equation for the symmetric problem is solved by use of the expansions
w™(n, 0) = —a; Wi Priaied (1= 938/ PRtdia(0), 0<9 <1, (4.1)

241 m
o2(0,0) = 1 5 SP b L PR (0) PRl (1B (1 =10k, 0 <7<t (42)
where Pj*( ) is the Legendre function of the first kind (Erdelyi 1953). The expansion (4.1)
is seen to be of the form 7™(1 —%2)% times an arbitrary even polynomial in 5, while (4.2) is 7™
times an arbitrary even polynomial in %. The normalizing factors in (4.1) are chosen such that
each term approaches W7 (1 —#?2)} as y — 1. The terms in (4.2) are normalized such that ST =
in(1—v)" W7 in the static limit, £ = 0.
The inner integral in (3.5) is now evaluated by use of the result
1 pm 1—¢£2)% L.
[l U 0 7 () dE = (= 1) 5 Bisagia) (43)

0 m+-2j+1

where j,,( ) is the spherical Bessel function of the first kind (Abramowitz & Stegun 1965). This
result follows by induction from Sonine’s firstintegral (Krenk 1982). Substitution of the expansion
(4.1) into (3.5) then gives

ﬂtfzz(% 0) = 22 (-1) W'"f {(s*— 3%)2 — s%a(s) B(5)} a(8) 7 Ju(W5) Jm+2jea(s) ds. (4.4)

The expansion coefficients $;* are then determined by use of the orthogonality relation for the
Legendre functions (Erdelyi 1953)
0, J#1h
! m 2 % m 2 % 77d77
OPm+2f+1{(1—77) }Pocaa{(1—7%) }m= U CLR TR L (4.5)
2m+4j+3  (+1)! ST
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172 S. KRENK AND H.SCHMIDT
After change of the order of integration the result can be written as
SP = (2m+4l+3) 3 (— 1) WP AL, (4.6)
i=0

where 47} are elements of a symmetric complex matrix:

m (5 — $4%)% —s%a(s) B(s)
-,

= sou(s)

]m+2] +1(8) Jmrara(s) ds. (4.7)

The integral in (4.7) can be recast into a form that is more suitable for numerical integration.
The principle is to extend the integrand into the complex half-plane Res > 0 and use contour
integration. Details of the procedure are given in Appendix A. When the integration variable is
changed to £ = s/k, the integration intervals are [0, 1] and [0, y], where v is a material constant

defined by
vi=h/k* = F(1-2v)/(1—v) < 1. (4.8)

The result is expressed in terms of the spherical Hankel function A ( ) in the form

1 i
2m +47+382(y2—£2)t

= [ {asi ggi gl) K205 (KE) s (E) + d

+ [ A - D (D jmewa (B G <L (49)

The Kronecker delta ¢, is used to introduce a modification of the integrand of the diagonal
elements. The 1ntegrals are evaluated numerically by Gaussian quadrature with the square-root
weight functions included explicitly, and this makesthe particular choice of diagonal modification
convenient. The elements 47, j > [, follow from symmetry, 4; = A;;, and for higher values of m
use is made of the recurrence relation

ATy = Af 5 (4.10)
The antisymmetric problem

Form = 0the twointegral equations (3.11) uncouple because J_, () = — J;(x). The uncoupled
equations are

L) = 2 = ) — s N Ji(ms) [ 0 s s
ﬁofz("], 0) - aszo {( k ) (5) /3( )}/j’(s) Jl("} )fo u (5340) ‘gjl(g )dgd ) (4'11)

2 h(1,0) = =5 [ 46 i) [ 00(6,0) £ dk (4.12)

These integral equations describe the radial shear and torsion problems, respectively.

Again, suitable expansions for displacements and stresses are determined from the limiting
behaviour of the integrands s/k — co. The expansions corresponding to (4.1) and (4.2) with
m = 1 are

(7, 0) ° (U5 ~
{v"(n, )} “EO{U } bai{(1 =78}/ P1;(0), 0 <7 <1, (4.13)
o'rz("?a ) » (T (21+1) ) ) \

{0'02(77, )} =”;§},{T,}(21+3)vp2+2!(°)1’ af{(1—7)B/ (19}, 0<y <1 (4.14)
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The integral equations (4.11) and (4.12) are reduced to matrix form by substitution of the
displacement expansions (4.13) and use of the orthogonality relation (4.5). The result is

= (5+4) 3 (~ )" U3BY, (4.15)
j=
T9 = (5+4) -i (= 1) UICY,. (4.16)

The matrices Bj;and C}; turn out to be special cases of the general matrices B}; and C}; needed to
solve the full antisymmetric problem. They are defined as

== /?fw = lkz);/;_( 5)20‘(5) ﬂ(S)Jn+2f+1 (8)Jnrarsa(s) ds, (4.17)

it —‘f £is) — Jn+2i+1(8) Jnsar41(5) ds. (4.18)

It is seen that B follows from A4}; by exchanging the function a(s) in the denominator with S(s).
The technique of Appendix A reduces these integrals to

05
% _f {4klg((§1 32))%hn+2y+1("§)]n+2t+1(k§) 2n+z11-_]+3§2(1-—§2 }dg

+ j TaKi (7 = )y (R () A, < (419)

. . o5 .
O = [ [ €1 = My s R k) + 5y oy 6 T < L (420)

The remaining elements follow from symmetry, B} = Bf; and C% = C7;. In addition use is made

of the recurrence relations
By = Biy, CF = Ol (4.21)
The procedure for defining the displacement and stress expansions is easily generalized to the
coupled integral equations (3.11) form > 1. The appropriate values of the indices in the displace-
ment expansions follow from the inner integrals, while the indices of the stress expansions follow
from the outer integral. Thus the expansions of «™(7, 0) +v™(5, 0) and o7%(7, 0) + o (7, 0) for
m > 1 can be obtained from (4.1) and (4.2) by exchanging m withm + 1, i.e.

un(1,0) £v™(9,0) = —a ,20 U Prttie (1 —90)8/PRiildin 0), 0<9 <1, (4.22)
j=

(20+1)! _
2(m+ 1) +2[+1}! miiia41(0)

x Puiita{(1-7)8/(1-9%% 0<p <1 (4.23)

When these expansions are substituted into (3.11) the integral equations are reduced to matrix
equations by use of the orthogonality relation (4.5). The result is conveniently expressed in terms
of the matrices Bj; and C7}; defined in (4.17) and (4.18). These definitions are written in terms of
a common index n appearingin both of the spherical Bessel functions. The first term of the integral
equation (3.11) couples o7} + o7; with 4™ + o™, and clearly n = m + 1. The second term couples
o7; + 0, with #™ ¥ v™ and leads to a product of spherical Bessel functions that is rewritten as

o7 (9,0) £ 052 (9,0) = nE Tm

jm:}:l+2:i+1 (8) Jmtrtar1(s) = j(m:bl)+2(j3{21)+1 (8) Jomv+2141(5), (4.24)
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174 S. KRENK AND H.SCHMIDT

Thus n = m £ 1 in the second term also, but here j must be replaced by jF 1. This gives the
equations for m > 1:

TT(2(m + 1)+4z+3}z — 1)U (BRI 4 OTEY) — UTF(BREL, — CTAL)Y. (4.25)

In the static limit, £ = 0, all the matrices 4%, Bj; and C} reduce to diagonal form

. . & T
n = no__ gl
IlclrrOlA,, }cm(l)B;’”l T4 7320 (4.26)
. d; n
no 0=
}Cm(:C,l 74732 (4.27)

The closed-form solution for £ = 0 was given by Krenk (1979, 1981). The limit is continuous in
the expansion coefficients and has been used to check the numerical calculations.

It is of interest to note that the present solution technique, which follows directly from the
systems of one-dimensional integral equations (3.5) and (3.11), may also provide the most direct
numerical method of solution of the equivalent two-dimsional vector integral equation given by
Martin (1981). In that case the spherical Bessel functions in the matrices 47, Bj; and C}; would
come through integrations in the angular direction and not as here through complex contour
integration.

Stress intensity factors

The integral relations (3.5) and (3.11) are valid in the full plane of the crack and can therefore
be used to determine the behaviour of the stresses at the crack front. The equivalence between
the limiting behaviour of the integrands for s — oo and the static limit £ — 0 enables direct use
of the results of the static case as given by Krenk (1981).

The stress components o, 0,, and oy, exhibit square-root singularities at the crack front, and
their magnitude is determined by the stress intensity factors

kl(e) O‘zz(n 03 0)
{kz(ﬁ)} = lim {2(r—a)}} {o‘,z(r, 0, O)} (4.28)
k3(0) et 0'02(7‘, 0’ 0)

Formulae for the stress intensity factors in terms of the crack-opening expansion cocfficients now
follow directly from the results of Krenk (1981):

b(O) = {5 5 [ 00 5w, (4.29)
k() = 5 fi[{ } > U+ %i {Efff;’g))} %(U"’++U"‘“)] (4.30)
ky(6) = ,m%[{_l}jgo Ul §; {j‘c’gi’?z;)}jgo%(U;M-U;"—)]. (4.31)

The simplicity of these relations is a consequence of the normalization of the crack-opening
displacement expansions at the crack front.

5. THE SCATTERED FAR FIELD

Perhaps the most important aspect of the problem under consideration is the diffraction of
the incoming wave. By the separation of “he full problem into two parts, the undisturbed original
wave and the crack with surface loads, the diffraction emerges from superposition of the original
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ELASTIC WAVE SCATTERING BY A CIRCULAR CRACK 175

wave and waves emitted from the crack when subjected to surface loads. The solution of the wave
emission problem involves the evaluation of the transform functions A™(s), B™(s) and C™(s) and
substitution into the relevant integral representations such as (2.15)—(2.18). Finally, the influence
of the distance from the crack is extracted explicitly for the far field, leading to expressions for the
angular distribution. As in the previous sections it is convenient to analyse the symmetric and the
antisymmetric problems separately and postpone their superposition.

The symmetric problem

In the symmetric problem the transform functions follow from (3.2)-(3.4), (4.1) and (4.3) in
the form

Bn(s) = 2 Am(0) = 5 B (= 1V W aay ), (5.1

Cm(s) = 0. (5.2)

The displacements are then obtained from (2.15) and (2.16) as

alw'"(% £)
P e RO O B VAR ACOLE (53)
Zum(,8) £om(2, )
= §, (—1)7 Wm_?_fw{$ (s2— 1k2)_‘g_e—§a(s) +5B(s) e'Cﬁ(S)}j i+1(8) Tt (173) ds. (5.4)
<o J k2 0 2 OC(J‘) - m+2j+1 mxl . .

These expressions can be reformulated by the contour integration method of Appendix A. For
7 > 1 the last factor is rewritten in terms of Hankel functions by use of

2J,(ns) = HP (15) + HP (95), n=mm=1. (5.5)

In this case neither quarter circle contributes, and after combination of pairs of integrals the
result for w™(9, {) is

1w"‘(% £ =X (-1)ywp kz[[ f — 3£2) sin {E(h2 — $2)3} fin paga(5) HP (95) ds
-i f S (LR 8 g a(5) D (15)

+ [ 7T ) sin L 9D = g2sin QUG+ B sy alie) HRGrg) dg | (5.0

By changing the integration variable in the last integral to #gq it is easily demonstrated that this
integral approaches zero faster than = as 4 — co. Thus it does not contribute to the dominating
far field of diverging waves.

A physical interpretation of the first two integrals is obtained by introducing spherical
coordinates {p, ¢, 0}, related to the cylindrical coordinates {, 6, {) by

7 =psing, {=pcos¢. (5.7

13 Vol. 308. A
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176 S. KRENK AND H.SCHMIDT

After introduction of a trigonometric substitution the far-field contribution to w™(#, {) is

Sunn,€) ~ E (=1 Wy {2in [ 2sint 1) cos psin (phcos s cos)
x HED (ohsin § 5in ) jsagaa(hsin ) dy
_ 2k f :"" sin? ¢y cos ¥ sin (pk cos ¢ cos )
 HD (phsin § 5in ) sy a(ksin ) dy . (5.5)

No matter how large the value of p is, there will be a neighbourhood around zero where the
argument of the Hankel function is small. Therefore the interval of integration is divided into
two parts by a point ¢ = 4(p) with the property that A(p) - 0 and p4(p) - o0 as p - 0. A
suitable choice of the function 4(p) is 4(p) = p®~1, 0 < § < 1. In the interval 0 < ¥ < 4(p) an
upper bound on the integrand follows from the bound |H (z)| < C,+Cyz~™~¢ where ¢ is a
small positive number, and it is easily seen that this interval contributes terms that are small
compared with p~!. Thus the dominating contribution comes from the interval 4(p) < ¢ < in,
where the Hankel function is replaced by its asymptotic form for large argument:

H@(z) ~ (2/nz)}e-te—bmibm, (5.9)

The leading term of w™(, {) then is
wm(,0) ~ (1) Wi(2/n)b climths
i=0

in . cos ) . )
* ["f , S =) e g s - A VN CE S R

k[ RO ko) ko) (bsiny) | (5.10)
When combined with the time factor ei“! the exponentials in (5.10) are recognized as conical
waves propagating along the directions determined by the angles ¢ + ¢. The integrals represent
superposition of these conical waves. However, at large distances from the crack, spherical waves
of the form p~le~ and p~le~*» dominate. This is evident from the asymptotic form of the
solution of the problem in spherical coordinates, but also follows from (5.10), when it is observed
that all conical waves with ¢ # ¢ cancel at large values of p owing to interference. The mathe-
matical analysis demonstrating this is given in Appendix B. By taking out p~te~i*» and p~! e~i*r
as factors, the results of Appendix B give

Zum(7, ) ~ 3 (— 1) W 2H00m gt (325in2 § — 3) O 250 )

j=0
+p~Le *rsin ¢ coS ¢ Jp i1 (Asing)}.  (5.11)

It is noted that the function (r/2n)% e=47 exp {i2rsin? §(¥ — ¢)} acts as a d-function in the limit
r — 00, while the other contributions vanish.

The asymptotic behaviour of the other displacement components, (5.4), is found in the same
way. The conical waves propagated along the normal 0 < ¢ < in are produced by integration
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ELASTIC WAVE SCATTERING BY A CIRCULAR CRACK 177

along the upper part of the cut complex s-plane. The factors a(s) and f(s) from (5.4) therefore
contribute with the values a(s +10) and (s +10), and the result follows immediately from (5.11):

1 , . . . .
~@n(1,8) £, ) ~ F X (= 1) WP 2eh0 0 (5oL oy 25ind ¢ — ) 074 (hsin 6)

Ins

P O gy a(hsin @)}, (5.12)
It is noted that the right-hand side of (5.12) is independent of the choice of signs, and therefore
the angular displacement component v(7, 6, {) vanishes identically. This is a consequence of the
fact that the potential ¥(#, 6, {) vanishes identically in the symmetric problem.
In terms of the spherical components {u,, u;, v} the displacement field takes the simple form

Up 1 in visin?gp -1 = ., _l{cosmﬁ & Niwms .

S~ pten p2—-————-——sin¢ m=01m Ginmf ]Z_jo( DI W jmiojia(hising), (5.13)
Y ik O imeafcosmOl B i . .

S~ pte P2cos¢m§=}01m sin mf EO( 1)I W7 ]m+2]+1(ksm¢).. (5.14)

As is also clear from the physics of the problem, u, corresponds to a longitudinal wave, while u
corresponds to a transverse wave. [tis seen that part of the dependence on the angle ¢ consists of
factors that are independent of m. These factors were identified in the special case m = 0—i.e.
normal incidence of longitudinal waves—by Mal (1970), but the relative magnitude of |u,| and
|ug| given was different from that given by (5.13) and (5.14) and is believed to be in error.

The antisymmetric problem

The transform functions of the antisymmetric problem are given by (3.8)-(3.10). Upon
substitution of the expansions from § 4, they are of the form

12 [2U5j242i(5), m =0,
An(s) = SBO puy L 3 _17{ 322 ' 5.15
) 52— 3h* “ k2i=0( ) UTt Jmr242(8) = UT' " myai(s), m >0, (6.15)
© 2U%,.0:(s), =0,
Cn(s) =__1_2 $ (_1),.{ mj]2-+2](s) o m (5.16)
25%=0 UF jmr242(8) + U Jmias(s), m >0.
The displacement field then follows from substitution into (2.15) and (2.16):
® 1 [ s
1 % 20, ay(s) ylns) ds, m =0,
a w™(7, g) =
el .1 [ s
X {U§n+.].m+2+2j(s) - Ugn_jm+2j(s)}‘]m(775) dJ‘, m > O, (5'17)
3 (= 1) f ® [1;15{32 e—4alo) _ (52— 1k%) e~tAO) 2T + e—ms)ch]
i=0 0
| X Jas25(s) Si(9s) ds, m =0,
(9, ©) 2o (1,0} =1 o el g ‘ .
2 (— )7 ] £ et (= ) B Uy 5) = UP ()
]=
k Rt ) 4 U ]'m+2,.(s)}] Tnsa(1s)ds, m >0. (5.18)

13-2
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178 S. KRENK AND H.SCHMIDT

The asymptotic forms of (5.17) and (5.18) in spherical coordinates follow directly from an
analysis similar to that for the symmetric problem:

{cos (mﬁ)}

u
L ety cos¢[2 5 (= 1) Upuia(hsing) + 3 (8

m=1

8

% 3 (= )/ U iy (hsing) = UF s hsin o). (619)

=0

L ' o 7
S_H-l-s_llgls_¢—2[2z = 1) Uj joy9i(ksing) + T lm{;:lons((;zo))}

m=0

U :
2 p! e—ikp
a

c

j=

X
i

() U sk §) = USsoy(ksing)}] . (5.20)

It1

8

: sin (mf) }

U e —ple—tkpl — 1) UY jo95(ksi >, im
- ple P2c0t¢[2]_§0( 1)7 UG jaro5(ksing) + ¥ 1 — cos (mf)

m-+1

(= V(U Jusaroglbsing) + UP-jsaibsing))]. (5.21)

It

=
Again u, corresponds to a longitudinal wave, while %, and v correspond to transverse waves. In
this case also part of the dependence on ¢ appears as factors that are independent of m. The
special case of torsion, i.e. only UY # 0, was treated by Mal (1970), who gave a factor (sin ¢)~1
instead of cot¢ in (5.21). It is clear from the symmetry conditions that a factor cos ¢ must be
present.

6. SCATTERING CROSS SECTIONS AND PLANE WAVES

An important parameter is the total power scattered by the crack. In the present formulation
this quantity is easily evaluated, because the expansions of stresses and surface displacements
constitute biorthogonal systems.

The contribution from the symmetric field is

(Py = fgnjaRe{iww(r, B)o,(r, 0)} rdrdo (6.1)
0 0

where the factor } from time averaging has been compensated for by the presence of two crack
faces. Upon substitution of (4.1) and (4.2) the dimensionless form becomes

(u) L) ok 5 o Re (W) Y44 3 T Re{(iwy) 87} (62)

/1/7[(12 j= 04] m=1j= 02m+4j+3
The formula (6.2) covers the contribution from either the upper or the lower set of trigonometric
functions in (2.5)—(2.7). In the general case contributions from both may be present.
The contribution from the antisymmetric field is, similarly,

P it 3T 575
(ﬂ) ;MZ %3 s s Re () T3+ (09 T

(7)) Tr 4 — (U7 T3+, (6.3)

i E ZRC 7 2m44+5

1
T m=15=0 {2m+4j+ 1

Apart from a few special cases, notably normal wave incidence, both the symmetric and the
antisymmetric parts will contribute to the power.
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ELASTIC WAVE SCATTERING BY A CIRCULAR CRACK 179

In the special case of incoming plane waves it is customary to relate the scattered power to the
power per unit area normal to the incoming wave. This ratio has the dimension area and is called
the scattering cross section. For incoming plane longitudinal and transverse waves with amplitude
a the power per unit area is given, respectively, by

- -

(S

k2. (6.4)

The scattering cross section as a fraction of the crack area then follows from normalizing the sum
of (6.2) and (6.3) with the appropriate expression from (6.4).

Itisinteresting to compare this way of evaluating the scattering cross section with an alternative
method following from a result of Barratt & Collins (1965). The physical content of this result
is that the total field can be considered as a superposition of a plane wave and the scattered field.
Interference phenomena affecting the amplitude, and thereby the scattered power, can be
evaluated in the far field in the direction of the incoming wave, and knowledge of the far field in
this particular direction therefore suffices for the determination of the scattering cross section.
Mathematically, the result can be expressed in terms of three formulae: one for a pressure wave,
one for a vertically polarized shear wave and one for a horizontally polarized shear wave. In the
terminology of this paper the respective scattering cross sections Xp, gy and Zgy are deter-
mined by

1%5 = "%Im (,}i_ﬁp e’y fa), (65)
SR — o
%% = ‘%Im (,}if.lp et*ru,y/a) ()

where the displacements correspond to incoming waves of amplitude a, and the spherical angles
¢ and 6 correspond to the direction of propagation of the incoming wave.

It is seen that the expressions (6.5)—(6.7) for the scattering cross sections do not involve the
crack surface stress expansion coefficients explicitly. On the other hand the identities implied by
the two different methods of evaluation imply that the stress expansion coefficients for plane
waves are related to the scattered far-field expansion functions. In the numerical calculations
presented in the next section the two different ways of evaluating the scattering cross sections
have been used to check the far-field expansions against the crack surface stress expansions.

7. NUMERICAL RESULTS

The physical problem to be solved can be considered as a superposition of a plane wave and
the scattered field. The total stress vector on the crack surface vanishes identically, and the plane
wave therefore defines the crack surface stresses to be used in the scattering problem. It is con-
venient to treat each of the three types of plane wave separately with use of the Cartesian
coordinate system {x, y, z} indicated in figure 1, while the scattered fields are described in terms
of the spherical coordinates {r, ¢, 6} also shown in figure 1. The scattered P-waves correspond to
u, # 0, scattered SV-waves to uy # 0 and scattered SH-waves to v # 0. The direction of the
incident plane wave is determined by the angles ¢ = ¢, and 6 = 0.
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180 S. KRENK AND H.SCHMIDT

The displacement field of the plane P-wave is

U, sin ¢,
{uy} = uo{ 0 }expi{wt— (h/a) (xsin @, +zcos ¢,)}, (7.1)

u, COS @q

where #, is the amplitude and the time factor e has been included for clarity. By use of Hooke’s
law and a change of sign the crack surface stresses of the scattering problem are found to be

O v~2—2sin% @,
{amz} = iﬂ/z"—a" { sin 268, } exp { —ih(x/a) sin ¢, (7.2)
0

Ty

Ficure 1. Spherical coordinates (p, ¢, 8) and angle of incidence ¢,.

The displacement field of the plane SV-wave is

Uy cOS @,
{uy} = uo{ 0 }expi{wt—(k/a) (xsin @y + 2z cos )} (7.3)
u, —sin ¢,
and the corresponding crack surface stresses in the scattering problem are
0, wl™ sin 2¢,
{o’m} = ipuk-2 { cos 2¢, } exp { —ik(x/a) sin ¢,}. (7.4)
Oy ¢ 0
Finally the displacement field of the plane SH-wave is
'u? 0
J\uy} = U, {1} expi{wt — (k/a) (xsin ¢y +z cos @)}, (7.5)
u, 0
generating the crack surface stresses
e 0
{om} = iﬂkﬁa@{ 0 } exp{—ik(x/a) sin gy} (7.6)
Tys cOS ¢,

in the scattering problem:.
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While the crack surface stresses (7.2), (7.4) and (7.6) can be expanded explicitly in the form
used in § 4, the general case is more conveniently handled by use of interpolation. In the present
case the necessary expansion coefficients were determined by interpolation withm = 0, ..., 7 and
Jj=0,...,9.

The scattering cross section, expressed as a fraction of the area of the circle, is givenin tables 1-3
for P-, SV- and SH-waves, respectively. It is interesting to observe that for normal incidence,
¢, = 0, the scattering cross section attains a value close to 2na? for £ 2 4. The value is explained

TABLE 1. SCATTERING CROSS SECTIONS FOR INCIDENT P-WAVE

:é angle of incidence/deg... 0 15 30 45 60 75 90
>-' E frequency Poisson ratio

o 23] 0.5 0.05 0.012 0.011 0.008 0.005 0.002 0.001 0.000
Cd e 0.15 0.010 0.009 0.007 0.005 0.002 0.001 0.000
= Q) 0.25 0.009 0.009 0.007 0.005 0.003 0.001 0.001
I O 0.35 0.009 0.008 0.007 0.005 0.004 0.003 0.002
=w 0.45 0.010 0.010 0.009 0.008 0.007 0.007 0.007
- 1.0 0.05 0.287 0.259 0.188 0.107 0.045 0.011 0.001
5 Z 0.15 0.244 0.222 0.167 0.102 0.049 0.017 0.007
= 9 0.25 0.214 0.198 0.156 0.105 0.0€0 0.032 0.022
E e 0.35 0.202 0.191 0.161 0.123 0.088 0.064 0.056
(@) &f) 5 0.45 0.236 0.231 0.215 0.195 0.175 0.161 0.155
8 (2 2.0 0.05 2.843 2.577 1.913 1.141 0.510 0.129 0.006
= < 0.15 2.839 2.582 1.937 1.185 0.567 0.191 0.068
E E 0.25 2.894 2.657 2.059 1.350 0.753 0.381 0.258
0.35 3.239 3.035 2.509 1.864 1.297 0.929 0.803
0.45 5.437 5.288 4.889 4.370 3.879 3.536 3.415
3.0 0.05 1.734 1.823 1.790 1.328 0.666 0.176 0.008
0.15 1.814 1.861 1.779 1.337 0.720 0.252 0.088
0.25 1.910 1.917 1.801 1.410 0.877 0.456 0.302
0.35 2.099 2.078 1.952 1.650 1.249 0.920 0.796
0.45 2.920 2.889 2.792 2.628 2.435 2.278 2.218
4.0 0.05 1.814 1.753 1.577 1.205 0.654 0.183 0.008
0.15 1.711 1.693 1.569 1.214 0.689 0.247 0.082
0.25 1.655 1.662 1.581 1.276 0.819 0.431 0.283
0.35 1.695 1.712 1.676 1.476 1.150 0.859 0.745
0.45 2.204 2.223 2.249 2.228 2.150 2.062 2.023
5.0 0.05 2.081 1.879 1.493 1.065 0.566 0.157 0.006
:} 0.15 2.105 1.914 1.519 1.076 0.596 0.208 0.063
< u 0.25 2.106 1.945 1.577 1.140 0.695 0.249 0.220
— b 0.35 2.068 1.968 1.704 1.349 0.982 0.702 0.598
< 0.45 2.155 2.144 2.100 2.007 1.880 1.769 1.725
e 6.0 0.05 1.768 1.966 1.832 1.159 0.528 0.137 0.004
O H 0.15 1.794 1.956 1.841 1.216 0.583 0.184 0.051
Q{‘ E 0.25 1.801 1.909 1.818 1.298 0.712 0.323 0.192
O 0.35 1.747 1.826 1.812 1.486 1.035 0.698 0.580
I O 0.45 1.676 1.786 1.992 2.097 2.054 1.956 1.910
— o 7.0 0.05 2.019 1.890 1.652 1.203 0.599 0.155 0.004
0.15 2.004 1.914 1.696 1.234 0.633 0.196 0.048
2‘ ‘£ 0.25 1.987 1.922 1.733 1.203 0.739 0.327 0.186
g o) 0.35 1.905 1.865 1.745 1.464 1.053 0.712 0.586
T = 0.45 1.604 1.630 1.686 1.719 1.691 1.633 1.603
B 2 LOL 8.0 0.05 1.898 1.763 1.445 1.087 0.547 0.136 0.004
DA 0.15 1.918 1.765 1.465 1.106 0.589 0.180 0.043
9 Z 0.25 1.941 1.791 1.500 1.147 0.683 0.301 0.164
E § 0.35 1.955 1.812 1.542 1.249 0.902 0.608 0.495
O = 0.45 1.741 1.689 1.586 1.492 1.408 1.337 1.307
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by increasing concentration of the scattered field in the form of rays at ¢ = 0 and 180° for £ — co.
Also, for increasing frequency, the scattered field is increasingly dominated by waves of the same
types as the incident wave. The limiting resultis a ‘shadow’ behind the crack and standing waves
in front of the crack. This simple conjecture is supported by the scattered fields shown in figures 2
and 7.

Another observation is a seeming resonance phenomenon for P-waves at a frequency around
k = 2. The effect increases with Poisson ratio v. No similar phenomenon can be observed for

TABLE 2. SCATTERING CROSS SECTIONS FOR INCIDENT SV-WAVE

2’1 angle of incidence/deg... 0 15 30 45 60 75 90
>-4 >" frequency Poisson ratio

O : 0.5 0.05 0.005 0.006 0.007 0.008 0.007 0.006 0.005
e [— 0.15 0.004 0.005 0.006 0.006 0.006 0.005 0.004
= Q) 0.25 0.004 0.004 0.005 0.005 0.005 0.004 0.003
I O 0.35 0.003 0.003 0.004 0.004 0.004 0.003 0.003
= w 0.45 0.002 0.003 0.003 0.003 0.003 0.002 0.002
—w 1.0 0.05 0.101 0.123 0.165 0.180 0.150 0.104 0.083
<Z 0.15 0.084 0.101 0.132 0.142 0.120 0.085 0.069
= O 0.25 0.068 0.081 0.105 0.112 0.095 0.069 0.056
E = 0.35 0.054 0.0€4 0.082 0.088 0.075 0.054 0.045
(@) &t) 5 0.45 0.042 0.048 0.061 0.065 0.055 0.041 0.034
8 ‘2 2.0 0.05 1.642 1.649 1.609 1.439 1.172 0.934 0.841
S 0.15 1.401 1.442 1.462 1.322 1.051 0.802 0.704
E E 0.25 1.145 1.220 1.304 1.199 0.928 0.669 0.567
0.35 0.891 1.010 1.172 1.104 0.825 0.547 0.436
0.45 0.662 0.865 1.169 1.147 0.812 0.461 0.322
3.0 0.05 2.061 1.860 1.821 2.027 1.841 1.373 1.144
0.15 2.046 1.801 1.682 1.833 1.624 1.151 0.923
0.25 1.972 1.700 1.519 1.619 1.403 0.950 0.733
0.35 1.805 1.538 1.341 1.412 1.200 0.776 0.573
0.45 1.538 1.305 1.127 1.177 0.983 0.612 0.436
4.0 0.05 2.023 1.788 1.591 1.917 2.043 1,703 1.483
0.15 2.038 1.748 1.521 1.794 1.816 1.433 1.213
0.25 2.048 1.690 1.419 1.639 1.571 1.160 0.944
0.35 2.017 1.€02 1.300 1.481 1.338 0.910 0.703
0.45 1.884 1.460 1.209 1.387 1.167 0.710 0.505
5.0 0.05 2.093 1.866 1.324 1.525 1.825 1.519 1.278
o 0.15 2.135 1.834 1.280 1.435 1.616 1.288 1.0€4
<l 0.25 2.187 1.779 1.203 1.327 1.405 1.073 0.872
— b 0.35 2.234 1.696 1.109 1.228 1.212 0.877 0.699
< 0.45 2.024 1.565 1.042 1.173 1.047 0.703 0.546
> 'S 6.0 0.05 1.871 2.046 1.416 1.131 1.583 1.544 1.399
olm 0.15 1.911 2.044 1.346 1.150 1.561 1.377 1.175
e E 0.25 1.973 1.975 1.224 1.157 1.494 1.194 0.955
1) 0.35 2.058 1.800 1.085 1.161 1.402 1.01%5 0.758
I O 0.45 2.132 1.602 0.970 1.130 1.299 0.859 0.588
~ 7.0 0.05 1.919 1.602 1.432 1.030 1.451 1.383 1.184
0.15 1.855 1.961 1.383 1.007 1.334 1.188 0.988
2‘ ‘2 0.25 1.820 2.012 1.280 0.981 1.207 1.004 0.811
o ) 0.35 1.870 1.980 1.162 0.9¢0 1.108 0.852 0.666
52 = 0.45 1.961 1.751 1.055 1.045 1.037 0.728 0.542
B Ou 8.0 0.05 2.014 1.755 1.320 0.869 1.150 1.341 1.228
m% °© 0.15 2,020 1.798 1.256 0.854 1.163 1.172 1.014
92 0.25 1.977 1.872 1.182 0.868 1.128 0.9$0 0.811
T § 0.35 1.932 1.926 1.077 0.909 1.068 0.827 0.638
O = 0.45 1.994 1.810 0.996 0.969 0.996 0.686 0.500
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shear waves. There is a general decrease of the scattering cross section with the angle of incidence,
although the scattering cross section for SV-waves exhibits a local extremum in the interval
0< ¢ <90°

Figure 2 shows the scattered field from an incident P-wave with ¢, = 0 at the frequencies
k = 2, 4 and 8. Owing to axial symmetry the field is completely determined by the sections given
in the figure. The SH-waves vanish identically. With increasing frequency the scattered P-waves
are concentrated as rays, while the SV-waves degenerate into a more complicated pattern.

TABLE 3. SCATTERING CROSS SECTIONS FOR INCIDENT SH-wAVE

. angle of incidence/deg... 0 15 30 45 60 75 90
< frequency Poisson ratio
> 's 0.5 0.05 0.005 0.005 0.004 0.002 0.001 0.000 0.000
olm 0.15 0.004 0.004 0.003 0.002 0.001 0.000 0.000
oY, f 0.25 0.004 0.003 0.003 0.002 0.001 0.000 0.000
= O 0.35 0.003 0.003 0.002 0.001 0.001 0.000 0.000
O 0.45 0.002 0.002 0.002 0.001 0.001 0.000 0.000
— o 1.0 0.05 0.101 0.093 0.072 0.046 0.022 0.006 0.000
0.15 0.084 0.077 0.060 0.038 0.018 0.005 0.000
= ‘2 0.25 0.068 0.063 0.049 0.031 0.015 0.004 0.000
Yo 0.35 0.054 0.050 0.039 0.025 0.012 0.003 0.000
= 0.45 0.042 0.038 0.030 0.019 0.009 0.002 0.000
o &:) & 2.0 0.05 1.642 1.462 1.033 0.576 0.240 0.056 0.000
8 A 0.15 1.401 1.248 0.883 0.493 0.205 0.048 0.000
=Z 0.25 1.145 1.020 0.723 0.404 0.169 0.040 0.000
TS 0.35 0.891 0.794 0.564 0.317 0.133 0.031 0.000
- 0.45 0.662 0.591 0.421 0.238 0.100 0.024 0.000
3.0 0.05 2.061 1.873 1.379 0.788 0.327 0.075 0.000
0.15 2.046 1.848 1.340 0.754 0.309 0.071 0.000
0.25 1.972 1.774 1.275 0.711 0.289 0.066 0.000
0.35 1.805 1.625 1.169 0.652 0.266 0.060 0.000
0.45 1.538 1.392 1.016 0.576 0.237 0.054 0.000
4.0 0.05 2.023 2.048 1.787 1.111 0.461 0.102 0.000
0.15 2.038 2.047 1.763 1.083 0.445 0.098 0.000
0.25 2.048 2.037 1.725 1.046 0.426 0.094 0.000
0.35 2.017 1.9¢4 1.670 1.002 0.405 0.089 0.000
0.45 1.884 1.873 1.581 0.952 0.384 0.084 0.000
5.0 0.05 2.093 1.950 1.674 1.148 0.510 0.115 0.000
0.15 2.135 1.967 1.664 1.135 0.503 0.113 0.000
4 0.25 2.187 1.983 1.642 1.115 0.493 0.111 0.000
] : 0.35 2.234 1.985 1.599 1.082 0.480 0.108 0.000
o 0.45 2.204 1.934 1.532 1.035 0.461 0.104 0.000
< 6.0 0.05 1.871 1.816 1.501 1.031 0.489 0.115 0.000
— > 0.15 1.911 1.835 1.498 1.020 0.481 0.113 0.000
ol 0.25 1.973 1.858 1.491 1.008 0.472 0.110 0.000
M= 0.35 2.058 1.873 1.468 0.995 0.463 0.107 0.000
i 0.45 2.132 1.859 1.417 0.976 0.457 0.105 0.000
:,‘_j O 7.0 0.05 1.919 1.934 1.347 1.018 0.581 0.144 0.000
o 0.15 1.855 1.929 1.349 1.003 0.570 0.141 0.000
= 0.25 1.820 1.930 1.344 0.986 0.558 0.138 0.000
- 0.35 1.870 1.952 1.328 0.966 0.546 0.134 0.000
5% 0.35 1.961 1.949 1.294 0.946 0.531 0.129 0.000
T = 8.0 0.05 2.014 1.830 1.302 1.025 0.534 0.121 0.000
&0 0.15 2.020 1.847 1.304 1.018 0.535 0.122 0.000
8 <0 0.25 1.977 1.868 1.304 1.002 0.535 0.123 0.000
[o}4 0.35 1.932 1.887 1.291 0.978 0.531 0.123 0.000
§'§ 0.45 1.994 1.902 1.259 0.949 0.522 0.122 0.000
Qo =

14 Vol. 308. A
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184 S. KRENK AND H.SCHMIDT

In problems without axial symmetry more extensive plots are necessary toillustrate the far field.
The sections are now supplemented by contours connecting points of equal amplitude on a large
spherical shell. Owing to the symmetry of the problem with respect to the xz-plane only one of the
intervals 0 < 6 < 180° and 180 < € < 360° needs consideration. Figures 35 illustrate the ampli-
tudes of the scattered far field from an incident P-wave with ¢, = 45°. The upper semicircles
contain contour plots of the spherical shell on the diffraction side, with ¢ and 6 as polar coordinates
in the intervals 0 < ¢ < 90° and 0 < 6 < 180°, while the lower semicircles show the reflexion
side with 180° — ¢ and 6 as polar coordinates in the intervals 90 < ¢ < 180° and 180 < ¢ < 360°.
Each semicircle can be envisaged as the unfolded quarter of a spherical shell. The magnitudes
associated with the contours can be inferred from the corresponding sections shown by solid lines
for 6 = 0, 180° and by dotted lines for 6 = 90, 270°.

(a) (b) (c)

a diffraction

g reflexion

3.00
L

3.00

&
T T T ) = T T 5 T T J r T T T T
1.60 v.20 <> 1.20 3.0 o).
8]
&
8
T T J
00 1.20

3.00

r T T T T T T d r T T
1.60 /VD 1.60 .20

3.00

Ficure 2. Amplitudes of scattered waves from incoming P-wave
with ¢, = 0. Frequencies k are (a) 2, (b) 4, (¢) 8.

The problem of the inclined P-wave also contains a scattered SH-component. For £ = 2 the
P- and SV-lobes are tilted slightly, and for £ = 4 both the diffraction and the reflexion lobes of
the P-wave are tilted forward, while the backward SV-lobe degenerates. At £ = 8 the SH-
contribution has diminished and P- and SV-waves have clear ray character. The angle of the
reflected SV-wave is predicted quite accurately by the formula for reflexion by a free surface (see
for example Achenbach (1973, p. 175):

—sin gy = ysin @,. (7.7)
With ¢, = 45° and v = 0.25 this gives ¢gy = 156°.
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ELASTIC WAVE SCATTERING BY A CIRCULAR CRACK 185

Figure 6 shows amplitude sections for an incident P-wave parallel to the crack, ¢, = 90°. The
magnitude of the scattered field depends strongly on the Poisson ratio v as shown in table 1. For
low values of & (k < 1) the scattered field approaches that generated by an incident P-wave with
¢ = 0 but is scaled by the factor v/(1—v). As k increases the lobes of both P- and SV-waves shift
forward, and for £ = 8 the angles ¢y = 36° and ¢gy = 144° from (7.7) again accurately predict
the behaviour of the scattered SV-waves.

Figure 7 shows the diffraction of a SV-wave with ¢, = 0. This case also covers the SH-wave
with ¢, = 0. As for an incident P-wave with ¢, = 0 the scattered waves of the same type as the

diffraction g

.20

reflexion -

J
1.20

Q
N

1.20
4

\ \V{///

Ficure 3. Amplitude contours and sections of scattered waves from incoming
P-wave with ¢, = 45°. Frequency £ = 2.
14-2
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186 S. KRENK AND H.SCHMIDT

incident wave approach rays at ¢, = 0 and 180°, while the waves of different type diminish with
increasing frequency.

An incident SV-wave with ¢, = 45° only induces normal stresses on the crack surface, and the
corresponding scattering problem is similar to that for an incident P-wave with ¢, = 90° apart
from the different wave length. For ¢, = 90° the lobes correspond to those for ¢, = 0 for small
values of £, while for increasing values of £ they first shift forward and then transform to a forward
ray and a backward ray.

The far field corresponding to an incident SV-wave with ¢, = 30° is shown in figures 8-10.
At low frequencies the scattered SV-waves follow an approximately doubly symmetric pattern,

diffraction ~

r T T
2.00 7

reflexion

8.

T T T T
2.00 . o.00, 2.00

|
/ §J

——

Ficure 4. Amplitude contours and sections of scattered waves from incoming
P-wave with ¢, = 45°. Frequency k = 4.


http://rsta.royalsocietypublishing.org/

a

/%

A A

A \
' e

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Py
A

o \

<

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ELASTIC WAVE SCATTERING BY A CIRCULAR CRACK 187

tilted at 30°. With increasing frequency the scattered SV-waves are concentrated in a ray behind
the crack, presumably producing a shadow in the limit £ — co. The apparent singularity of the
contour plots of SV- and SH-waves at ¢ = 0 and 180° is a consequence of the decomposition in
spherical coordinates and does not represent a physical singularity.

The scattering of an incident SH-wave with ¢, = 0 has already been illustrated by figure 7.
The far field corresponding to an incident SH-wave with ¢, = 30° is shown in figures 11-13. The
scattered SH-waves become increasingly dominating with increasing frequency and develop ray
character.

m diffraction EH

oD

O

reflexion

wn
<
.
4.00 4.00
i " I s
4
-

T T T 5 ~ T T T
(C 4.00 4.00
4
\ 8]
_// M

Ficure 5. Amplitude contours and sections of scattered waves from
incoming P-wave with ¢, = 45°. Frequency £ = 8.
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188 S. KRENK AND H.SCHMIDT

8. DiscUSSION AND CONCLUSIONS

A formulation of the elastic wave scattering problem for a circular crack has been developed.
By use of Hankel transforms the problem is reduced to a system of singular integral equations
(3.5) and (3.11) of a type previously investigated by one of the authors. The unknown functions
are the Fourier coefficients of the crack-opening displacements and the right-hand sides are the
Fourier coeflicients of the corresponding crack surface stresses.

4
b
B

°]  diffraction

THE ROYAL A
SOCIETY \

2 reflexion

PHILOSOPHICAL
TRANSACTIONS
OF

9
e
g

Ficure 6. Amplitudes of scattered waves from incoming P-wave
with ¢ = 90°. Frequencies & are (a) 2, (b) 4 and (c) 8.

—

;5 — Theintegral equations are solved numerically by expanding the Fourier coefficients in terms of

ol associated Legendre functions of integer indices, i.e. a suitable weight function and polynomials.

[ g "The solution technique provides direct matrix relations (4.6), (4.15), (4.16) and (4.25) between

Q) the crack-opening displacement expansion coefficients and the crack surface stress expansion

E @) coefficients. These matrices approach diagonal form with decreasing frequency, and the static
v

problem allows a simple explicit solution. Convenient and computationally efficient formulae
(4.9), (4.19) and (4.20) are given for the dynamic case.

The stress intensity factors are given as sums of the crack-opening displacement expansion
coeflicients by (4.29)-(4.31). Even more important are the far-field expansions derived in § 5.
They give the scattered far field in spherical coordinates as explicit series in trigonometric
functions, spherical Bessel functions and the crack-opening displacement expansion coefficients.
In § 6 explicit formulae for the scattering cross section in terms of the crack-opening displacement
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ELASTIC WAVE SCATTERING BY A CIRCULAR CRACK 189

expansion coefficients are given. Finally, numerical results for the scattering cross section and the
far field are presented and discussed in § 7.

In conclusion, the computational method may be said to consist of three main parts: expansions
of stresses and displacements on the crack surface, matrix relations between these two sets of
coefficients, and, finally, formulae expressing the near field and the far field explicitly in terms
of the coefficients. As the method accounts correctly for the singularity at the crack front, it is
highly accurate, and inclusion of the proper singular weight function also leads to very simple
explicit expressions for the stress intensity factors as well as the scattered far field.

(a) () (¢)
& 8 g
diffraction " ’
@) o
P 1.20 T T N ',.20 !'.W 5‘.m Sr.m DK T Y
* ]
4 | 4
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SV . T e ' P e oyt
8]
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8. 8 8
- ] w1
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1.20 ! * “o.oo i T Y20 s T i o T T 5.00 So00 | T T T E\:& T ! T T y
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Ficure 7. Amplitudes of scattered waves from incoming SV-wave
with ¢, = 0. Frequencies k are (a) 2, (b) 4 and (¢) 8.
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diffraction S

reflexion -

8

Ficure 8. Amplitude contours and sections of s~attered waves from incoming
SV-wave with ¢, = 30°. Frequency &k = 2.
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diffraction 4
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reflexion
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]

FIGure 9. Amplitude contours and sections of scattered waves from incoming
SV-wave with ¢, = 30°. Frequency £ = 4.
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Ficure 10. Amplitude contours and sections of scattered waves from incoming
SV-wave with ¢y = 30°. Frequency k = 8.
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Frcure 11. Amplitude contours and sections of scattered waves from iﬁcoming
SH-wave with ¢, = 30°. Frequency £ = 2.
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Ficure 12. Amplitude contours and sections of scattered waves from incoming
SH-wave with ¢, = 30°. Frequency & = 4.
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Ficure 13. Amplitude contours and sections of scattered waves from incoming
SH-wave with ¢, = 20°. Frequency k = 8.
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AprpPENDIX A. CONTOUR INTEGRATION
The principle in the contour integration used here to reformulate the matrices 47, Bj; and Cj;
is to write one of the spherical Bessel functions in the integrand as the sum of spherical Bessel

functions of the third kind: % (s) = KD(s) +HD(s). (A1)

The argument is then extended to the complex half-plane Re z = s > 0. For large values of z the
asymptotic behaviour of the spherical Bessel functions of the third kind is (Abramowitz & Stegun

1965) A2 (z) ~ iFOHD z-1etiE (2] > 1, (A2)

The part of the integrand containing A (z) therefore behaves asymptotically like |z|~2 in the
upper half-plane, while that containing A2 (z) behaves asymptotically like |z|~2 in the lower
half-plane.

With the definitions (2.11) and (2.12) of a(s) and f(s) the path of integration is z = s +i0. The
distinction between this path and z = s —10 is only necessary in the interval 0 <s<k

The matrix A7; defined by (4.7) is used as an example. In anticipation of a special convergence
problem the integral is expressed by the limit

4. [of(s2—3k)? . .
=~ Jim [T {509 a0 e (A3)
By use of (A1)

m 2 . (s — }k%)* ) @) ;
ji = — pﬂl_l)lgl W —5f(5) { {hinreia(s) + A eia(s)} Jmarri(s) ds. (A4)
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ELASTIC WAVE SCATTERING BY A CIRCULAR CRACK 197

For any finite value of ¢ the integral can be separated into two parts, one containing A% 95.1(s)
and another containing A, ;.4(s).

The first term is now integrated along the closed contour in figure 144, while the second is
integrated along the contour in figure 14.4. As neither of the integrands contains any poles within
the contours, the original integralsin (A 4) can be replaced by integrals over the remainder of the
contours, taken in the opposite direction. In these integrals the large quarter circles do not
contribute. Furthermore, the contributions from the imaginary axis cancel as a consequence of
the symmetry relation

hRv2ii1( = 2) Jmiaia(—2) = Bhoiia(2) Jmraria (2)- (A5)

(a) (b)

F1curEe 14. Integration contours in the complex s-plane: (a) A-contour; (b) h®-contour.

The contributions from the small quarter circles depend on the asymptotic behaviour of the
integrand as z - 0. Thus the deciding factor is

B a(2) fsaa(2) ~ Fi{(2m -+ 4+ 1)11/(2m+ 47+ 3) 1) 2242,
As AT = A7 it is no restriction to impose the condition j < /, and it then follows from expansion

of the full integrand in (A 4) that the small quarter circles only contribute to the diagonal terms
AT

h(s2—3K%)2, 0 . 4 [* @ ;
A5 = lim { sz e 7 2541(5) Jm+2141(8) ds'*‘/?z'fe sp(s) hm+21+1(5).]m+21+1(5) ds

>0+ SCZ(S)
k2 6\]' z=iedz J‘z: —ie EIE)}
2h2m+4j+3(fz=525+ see  2%))° (A7)

where 4, is the Kronecker delta. Evaluation of the last two integrals leads to the expression

4i 1k?
45 = tim (& [ a9 0

e—>0+
4i k 8
i [ s = Va9 b+ G g (AR)
Although this expression contains in essence the desired reformulation of 47, it is inconvenient
for numerical integration. The final step is therefore to express the last factor as an integral over
theinterval[e, 4], and itis desirable that thisintegral should be a product of a smooth function and
the weight function (A2 —s2)~3. The optimal choice appears to be the integral

B ds _(2=ert 1
J;- 2=t ke ,’;é'*‘ O(e). (A9)
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When this relation is used to eliminate the factor e~ from (A 8), each integral becomes continuous
in the limit ¢ = 0, and the result is

k(41 (52— 3k2)2 . k? J,
mn .. 2/ @ . it
= fo {k%(hz —s2)k Pk 25+1(S) Jm i1 (8) + om+ 45+ 352(1 ”Sz)él ds

k4i ) :
+ o ps(kz_52)%}lg)+27'+1(5).7m+21+1(5) ds. (A10)

APPENDIX B. TWO EXPONENTAL INTEGRALS

The asymptotic form of the displacements requires evaluation of integrals of the form

4n
L =limrd | F(y) ei2reos 3049 dys, (B1)
r—>0 0
in
I, =limr} f G () eizrsin® J0—) dy), (B2)
r—>0 0

where F(y) and G(y) are differentiable in the closed interval [0, {x], and 0 < ¢ < im.
The integral 1, is evaluated by observing that 7 = cos? (¥ + ¢) is a monotonic function of ¢
and therefore a suitable integration variable:

cos? 3¢
I =limr} _Fm

i2r7 d 5 B 3
r—>m cos? §(p +3n) 7(1 e 72) H ¢ T ( )

It now follows from the Riemann-Lebesgue lemma (for example in the form given by Sneddon
(1972, p. 30)) that ; = 0for 0 < ¢ < }m.

The integral I, is evaluated by use of the following result, known from the limit at infinity of
the Fresnel integrals (Abramowitz & Stegun 1965):

in
lim r} f cos }(f — §) elzrsint 109 4y
r—>0 0
(@r)tsin 3Gn—¢) ©
—lim2t| et dr = 2f f eidr = (2n)telin.  (B4)
0

7> (2r)sin §¢

By addition and subtraction
3n
L = (2n)teti"G(g) +lim ’%f {G(Y) — G(9) cos 3 (¢ — )} el2rsin*W=ddy. (B5)
r—>0 0

Again the Riemann-Lebesgue lemma may be used to prove that the limit of the integral in (B 5)
is zero, leaving

I, = (2m)}elinG(g). (B 6)
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